If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+17x-120=0
a = 1; b = 17; c = -120;
Δ = b2-4ac
Δ = 172-4·1·(-120)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{769}}{2*1}=\frac{-17-\sqrt{769}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{769}}{2*1}=\frac{-17+\sqrt{769}}{2} $
| 99x2= | | 6(4x-5)=x+6/3+13x | | 12x/(1,008+12x)=0,75 | | 12x/(1,008/12x)=0,75 | | (8x+4)-(5x-3)=25 | | 12x^2+17=5 | | 56+6b=86 | | 3^x+1=12 | | 4x+48x=0 | | f+4f=0 | | 8+X+10=3x | | 0.2c+12=33 | | 6+9a-10=-22 | | (2x+3)+4=13 | | (x+4)-5=10 | | 7^5x+5=49 | | -5x–15=-3x+4 | | 9h=5 | | .3x+0.12=0.03 | | 4+2,2h=-3.7 | | 4+2.2h=-2,7 | | 5x+3=2x+9. | | 355-5x=355-5x | | (68-9x)x5=115 | | (168-2x)/7=24 | | V(t)=5t^2-20t+20 | | 4x-15=6.5 | | 1-3(3x-4)=-7x-7 | | 22+11x=2 | | 1/2(12y-80)=98 | | (2-j)(3+j)(20-10j)=0 | | 4,8k,4=13 |